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FACTORIZING COMPLEX SYMMETRIC MATRICES WITH 
POSITIVE DEFINITE REAL AND IMAGINARY PARTS 

NICHOLAS J. HIGHAM 

ABSTRACT. Complex symmetric matrices whose real and imaginary parts are 
positive definite are shown to have a growth factor bounded by 2 for LU 
factorization. This result adds to the classes of matrix for which it is known 
to be safe not to pivot in LU factorization. Block LDLT factorization with the 
pivoting strategy of Bunch and Kaufman is also considered, and it is shown 
that for such matrices only 1 x 1 pivots are used and the same growth factor 
bound of 2 holds, but that interchanges that destroy band structure may be 
made. The latter results hold whether the pivoting strategy uses the usual 
absolute value or the modification employed in LINPACK and LAPACK. 

1. INTRODUCTION 

There are three main classes of matrix for which it is known to be safe not to 
pivot when computing an LU factorization: matrices diagonally dominant by rows 
or columns, Hermitian positive definite matrices, and totally nonnegative matrices. 
Here, we identify another class of matrices with this highly desirable property: com- 
plex symmetric matrices whose real and imaginary parts are both positive definite. 
Complex symmetric matrices arise frequently, particularly in algebraic eigenvalue 
problems [16], [17], and numerical methods that exploit their structure can be de- 
veloped; see, for example, [3], [7], [20]. Complex symmetric matrices with positive 
definite real and imaginary parts arise in calculations with Pade approximations to 
the exponential [6]; in this application the matrices are banded. 

In Section 2 we show that a complex symmetric matrix with positive definite 
real and imaginary parts can be factorized by LU factorization without pivoting 
and that the growth factor is bounded by 2. In Section 3 we discuss how best to 
solve a linear system with such a coefficient matrix. This leads to consideration in 
Section 4 of block LDLT factorization using the Bunch-Kaufman pivoting strategy, 
which we find uses only 1 x 1 pivots and leads to a growth factor bound of 2, but 
may make interchanges that destroy band structure. 

2. COMPLEX SYMMETRIC POSITIVE DEFINITE MATRICES 

We call any matrix of the form 

A = B + iC, B E Rnxn and C E RnTxhn both symmetric positive definite, 
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a CSPD matrix (standing for complex symmetric positive definite). Note that if 
A is a CSPD matrix then agA is not, in general, for a* E C. It is possible that 
in some applications CSPD matrices arise in scaled form and their structure goes 
unrecognised. 

We begin by establishing some basic facts about CSPD matrices. 

Lemma 2.1. A CSPD matrix is nonsingular. 

Proof. Let B+iC be a CSPD matrix and consider the linear system (B+iC)(x+iy) 
= d + ie. It may be rewritten as 

(2.1) [CB 
-C 

[y 
d 

The matrix of this linear system is nonsymmetric positive definite1 and therefore 
nonsingular. Hence d+ie = 0 implies x+iy = 0, showing that B+iC is nonsingular. 

LI 

Lemma 2.2. A CSPD matrix A has a unique LUfactorization A = LU. 

Proof. We have to show that the leading principal submatrices of A are nonsingular 
(see, for example, [12, Theorem 9.1]). But any principal submatrix of a CSPD 
matrix is CSPD and so nonsingular. LI 

Lemma 2.2 shows that an LU factorization exists without the need for pivoting, 
but it does not address the stability of such a factorization. The standard backward 
error analysis of Wilkinson shows that if an LU factorization without pivoting 
produces a computed solution x to Ax = b, where A E CfnXn, then 

(A + AA)x = b, -IIAIHOQ < cn3 pnullAlloo 
+ O(u2), 

where c is a modest constant and u is the unit roundoff (see, for example, [12, 
Theorem 9.5, Problem 9.8]). The quantity Pn is the growth factor, defined by 

maxi,J,k la( 
Pn maxij Iaij= 

where the a(k) are the elements of the Schur complements arising during the factor- 
ization. Hence backward stability is guaranteed if Pn is small. It is a nontrivial task 
to bound Pn for CSPD matrices because the multipliers can be arbitrarily large, 
just as for real symmetric positive definite matrices. As a simple example, for the 
CSPD matrix 

A=(I +i)[ 2' 6> 0 

the first multiplier in Gaussian elimination is e-1. In the rest of this section we 
show that a very satisfactory growth factor bound can be obtained. 

First, we show that Schur complements inherit the CSPD structure. 

Lemma 2.3. If 

p n-p 

A = A11 A21 
n-p [A21 A22] 

1A matrix E E RnXn is (nonsymmetric) positive definite if xTEx > 0 for all 0 7& x E Rn or, 
equivalently, if the symmetric part (E + ET)/2 is positive definite. 
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is a CSPD matrix, then so is S = A22 - A21Aj71A', the Schur complement of All 
in A. 

Proof. Clearly S is symmetric; we have to show that its real and imaginary parts 
are positive definite. Write A = B + iC with B and C partitioned conformally with 
A. Then 

S = B22 + iC22 - (B21 + iC21)(X + iY) 

where 

(Bil + iC,,)(X + iY) = B21 + C1. 

Hence 

[Bil CIi 1[ X 1 [B21 

_CII -BIL_ L-YJ -C2T1_ 

Thus 

Re(S) = B22 - [B21 C211 [sr] 

= B22 - [B21 C21] [C, I [B'l 
] 

which is the Schur complement of [I11 C ] in 

Bil Cil B2 1 Bil B[21 Cl1 
GI Cil -B1l C2TI = H B21 B22 C21 _IT =i HG2H_T, 

LB21 C21 B22] [C1 C2Tj -Blj 

for a permutation matrix H. Recall that the inertia of a symmetric matrix is 
an ordered triple (i+, i, io), where i+, i_, and io are, respectively, the number 
of positive, negative, and zero eigenvalues. We now use the fact that for a real, 
symmetric matrix H, if a leading principal submatrix H11 is nonsingular, then 
inertia(H) = inertia(HII) + inertia(H/H1l), where H/H11 denotes the Schur com- 
plement of H11 in H (see, for example, [10]). We obtain 

inertia(G2) = inertia(B) + inertia (-Bil - [C11 C2] B1 [Cvi]) 

=(n, p, ?), 

inertia(G1) = inertia (C[Cl -Bi) + inertia(Re(S)) 

= (p, p, 0) + inertia(Re(S)). 

But G1 and G2 have the same inertia, so inertia(Re(S)) = (n -p, 0, 0), as required. 
The positive definiteness of Im(S) is proved similarly. LI 

The next result implies that the largest element of a CSPD matrix lies on the 
diagonal. 

Lemma 2.4. If A is a CSPD matrix, then 
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Proof. Write A = B + iC. Using the well-known fact that (2.2) is true for a real 
symmetric positive definite matrix we have 

laij I - .+ i 

< V/bii bj j?+ c ic j 

< bii + Cii b ?c (Cauchy-Schwarz inequality) 

- aiijajjl. 

Theorem 2.5. The growth factor for a CSPD matrix A E C"><x satisfies pn < 2 
and this bound is the best possible. 

Proof. In the notation of Lemma 2.3, we have to show that every element of the 
Schur complement matrix S satisfies Isijl < 2maxi,j laijl. Since S is CSPD by 
Lemma 2.3, we have 

Re((A2,AllA' )jj) 
< Re((A22)jj), Im((A2,A71A T )jj) < lm((A22)jj). 

Squaring, adding and then takintg the square root gives 

|(A2 1A-1lATl )jj | <I (A22)jj I 

Thus Isjjl < 2 1(A22)jjj < 2maxi,j Iaij . Hence, by Lemma 2.4, 

IsijI < Isi lSjj I 2rmaxlaijl. 

Finally, consider the LU factorization 

A_ I +i I -il _ I 01 [+i 1- il 
A [j-i l4] - [-i Ii [ 2(1+i)] 

for which P2 = 2. The matrix A is not CSPD, because its real and imaginary parts 
are symmetric positive semidefinite and singular. But A + E(1 + i)I is CSPD for 
e > 0 and as e -+ 0, P2 -+ 2. Hence Pn < 2 is the best possible bound. LI 

We conclude from Theorem 2.5 that LU factorization without pivoting is norm- 
wise backward stable when applied to CSPD systems. 

3. SOLVING CPSD SYSTEMS 

How should we solve a CSPD system Ax = b? The natural choice is LU factor- 
ization without pivoting, which we have proved to be normwise backward stable. 
Symmetry can be exploited in the implementation, making the cost nr3/3 complex 
operations. Since no pivoting is used, any band structure in A is preserved in the 
factorization. 
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An alternative to working in complex arithmetic is to solve an equivalent real 
system. In preference to the real system (2.1), we consider the symmetric modifi- 
cation 

(3.1) [B CB] [] x [d] 

The coefficient matrix is a special case of a symmetric quasidefinite matrix [19]. For 
such a matrix an LDLT factorization exists. Although LDLT without pivoting is 
not always stable for symmetric quasidefinite matrices, conditions under which sta- 
bility is guaranteed are derived in [8], via corresponding analysis for nonsymmetric 
positive definite real systems [9], [15]. For the system (3.1) we find that stability is 
assured if IICB-1CI12/11AI12 is not too large. 

Solving (3.1) requires 8n3/3 real operations as opposed to n3/3 complex opera- 
tions to solve the original complex system directly, and it requires the same amount 
of storage. A complex operation requires between 2 and 8 real operations, so solv- 
ing the complex system should, in principal, be the more efficient option, but the 
actual relative costs of real and complex arithmetic will depend on the computing 
environment. 

LINPACK [4] and LAPACK [1] do not contain routines for LU factorization 
without pivoting applied to complex symmetric matrices. The user who does not 
wish to write special-purpose code but wishes to take advantage of symmetry would 
therefore have to treat the system as a general complex symmetric system and solve 
it using block LDLT factorization-based routines: LINPACK's2 CSIFA, CSISL, or 
LAPACK's CSYTRF, CSYTRS. These routines use the pivoting strategy of Bunch and 
Kaufman [2]. Two important questions arise. When the Bunch-Kaufman pivoting 
strategy is applied to a CSPD system 

1. Is the growth factor bound Pn < 2 still valid? 
2. Is bandwidth preserved for a banded matrix? (Implementations of block 

LDLT factorization with the Bunch-Kaufman pivoting strategy for banded 
real symmetric matrices are given by Jones and Patrick [13], [14].) 

These questions are answered in the next section. 

4. BLOCK LDLT FACTORIZATION 

We briefly summarize block LDLT factorization for a complex symmetric matrix. 
Let A E CXn be complex symmetric. If A is nonzero then there is a permutation 

1T and an integer s = 1 or 2 so that 

s n-s 

HAH_T = 
I 

C 

with E nonsingular. Then we have the factorization 

(4.1) HlAH = [CE-1 I2 [0 B - CE-ICT] [Q In8 

2LINPACK and LAPACK support block LDLT factorization for three different types of matrix: 
real symmetric, complex symmetric, and complex Hermitian. 
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Repetition of this process on the Schur complement S = B - CE-1CT leads to a 
block LDLT factorization 

(4.2) PAPT = LDLT, 

where L is unit lower triangular and D is block diagonal with each diagonal block 
having dimension 1 or 2. To describe the pivoting strategy of Bunch and Kauf- 
man [2] it suffices to describe the choice of H and s on the first stage of the 
factorization. 

Algorithm 4.1 (Bunch-Kaufman pivoting strategy). This algorithm determines 
the pivot for the first stage of block LDLT factorization with the Bunch-Kaufman 
pivoting strategy applied to a complex symmetric matrix A E C(n,n. 

aU: (I + vf-) /8 (r-_ 0.64) 
A := gA(2: n, l) o 
If A = 0 there is nothing to do on this stage of the elimination. 
r := min{i > 2: jail| = A} 
if JailI > aUA 

(1) use al1 as a I x I pivot (s = 1, 11= I). 
else 

[A(r 1:n, r)] 00 
if jail u > atA2 

(2) use all as a I x I pivot (s = 1, 1 = I). 
else if Iarr, > aU 

(3) use arr as a 1 x 1 pivot (s = 1, H swaps rows and columns 
1 and r). 

else 

(4) use [all arl as a 2 x 2 pivot (s = 2, H swaps rows and 
[ar, arrj 

columns 2 and r). 
end 

end 
LINPACK and LAPACK eschew the usual complex absolute value Ix + iyl = 

x2 ? y2. Instead they use 

(4.3) Ix + iyl := lxl + IyI, 
which is less expensive to evaluate and less prone to overflow and underflow in 
floating point arithmetic. The usual absolute value is used in the routine diagpiv 
in the MATLAB Test Matrix Toolbox [11]. We will consider both choices of absolute 
value in Algorithm 4.1. (We assume that the oo-norm utilizes whichever absolute 
value has been chosen). We write 

abs(x + iy) := y 

absi(x+iy) = XI+IYI, 

and we write IzI only when z is real or when we wish to make statements holding 
for both choices of absolute value. 

We wish to determine whether Algorithm 4.1 simplifies for a CSPD matrix. 
Serbin [18] considered this question and claimed, incorrectly, that for the absolute 
value abs1 no pivoting is required, that is, that Algorithm 4.1 leads to P = I in 
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(4.2). His argument was based on the erroneous assumption that the largest element 
in any column of a real, symmetric positive definite matrix lies on the diagonal. 
The following lemma summarizes the possible behavior of Algorithm 4.1 for both 
choices of absolute value. 

Lemma 4.2. Consider the pivoting strategy of Algorithm 4.1 for either choice of 
absolute value. For a CSPD matrix no 2 x 2 pivots are chosen. However, each of 
the cases (1), (2) and (3) that chooses a 1 x 1 pivot may be selected. 

Proof. The conditions that must hold for a 2 x 2 pivot 

E= [all arl =:F+iG larll= A 

to be selected on the first stage of the factorization are as follows: 

(4.4a) la,, I < aA,) 
(4.4b) la,, la < aA2, 

(4.4c) larr| < aa , 

(4.4d) la,, I larrI < aK 2X 

where the fourth inequality is a consequence of the previous two (note that (4.4c) 
implies a 7& 0). Since A is CSPD, E is CSPD and so F and G are symmetric 
positive definite. 

Consider, first, the absolute value abs. arom det(F) = f11f22 - f22l > 0 and 
det(G) > 0 we have the inequalities 

f 
2 

f 22 > f 24, Y~Y2 > 4~1 f119~22 ?i Y~f2 > f>1YfY112 11>2 >>4 911922 > 921v fll922 >- f9229-1f22-21 

which together imply 

(121 + 911 ) (f22 + g92) > (21 + g21)2. 

Since 

abs(E)= [ f/ 22? ] - [abs(aii) A 1 
f 02 ? g+ f2 2 ? g922 A abs(arr)_ 

it follows that 

(4.5) abs(all) abs(arr) > A2 > a 2A 2 

which shows that (4.4d) cannot hold. 
Turning to the absolute value absl, we have 

absi(a,,) absi(arr)- absi(arl)2 = (fil + 911)(f22 + 922) - (If21 + 19211)2 

= det(jF? + IGj) 

> 0, 

where we have used the facts that if E E R12X2 is symmetric positive definite then 
so is JEJ and that the sum of two symmetric positive definite matrices is symmetric 
positive definite. Hence 

(4.6) abs1 (all) abs1 (arr) > A2 > a 2A 2 

which shows, once again, that (4.4d) cannot hold. 
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We have shown that for both choices of absolute value a 2 x 2 pivot is not selected 
on the first stage of the factorization. In view of Lemma 2.3, the same argument 
applies to each stage of the factorization. 

It remains to show that cases (1), (2) and (3) in Algorithm 4.1 can all be selected. 
We give examples for real, symmetric positive definite matrices A, from which 
corresponding CSPD examples can be constructed for either absolute value by 
taking A + icl for suitably small e > 0. Case (1) is selected for A = I. Case (2) is 
selected for 

- 30e I o- 
4I 

A= 1 4 21. 
E0 2 4 

Case (3) is selected for 

A= 202, 0 > ? 

We can now draw some conclusions, all of which hold for either choice of absolute 
value. Lemma 4.2 shows that only 1 x 1 pivots are used by the Bunch-Kaufman 
pivoting strategy when applied to a CSPD matrix, so that D is diagonal, but that 
interchanges may nevertheless be performed. We see that block LDLT factorization 
therefore essentially produces the LU factorization of a permuted matrix PAPT, 
with DLT equal to the U factor, because of the uniqueness of the LU factorization 
shown in Lemma 2.2. Since pAPT is a CSPD matrix if A is, it follows that 
the growth factor bound pn < 2 holds; this bound is much stronger than the 
bound3 pn < (2.57)n-1 available for the Bunch-Kaufman pivoting strategy applied 
to general complex symmetric matrices [2]. 

We can also conclude that when the Bunch-Kaufman pivoting strategy is used 
with a banded CSPD matrix, the bandwidth may not be preserved, and it is easy 
to generate illustrative examples empirically. 

Finally, we mention that Sorensen and Van Loan [5, Section 5.3.2] suggest mod- 
ifying Algorithm 4.1 by redefining- := IIA(:,r)jflj. Their reasoning is that this 
modification does not affect any of the main properties of the algorithm (the growth 
factor bound and error analysis remain unchanged, for example), but for (real) sym- 
metric positive definite matrices the modified strategy results in no interchanges 
being made. It is easy to show that, with this modification, no interchanges are 
made for CSPD matrices either. 
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